
Dike: Deep Reinforcement Learning For Function
Scheduling in SLO-targeted Serverless Edge

Computing
Chen Chen∗, Emanuele Carlini †, Richard Mortier∗

∗Department of Computer Science and Technology, University of Cambridge, UK
†National Research Council of Italy, Italy

Email: cc2181@cam.ac.uk; emanuele.carlini@isti.cnr.it; rmm1002@cam.ac.uk

Abstract—Serverless computing is regarded as a good match
for distributed edge infrastructures. However, bringing the
function-as-a-service model to a highly dynamic, distributed, and
heterogeneous pool of resources has its fair amount of challenges.
Allocation of functions to the proper resource is an essential
operation that avoids over-provisioning and the relative waste of
computational resources. In this work, we propose Dike, a bi-level
function scheduling and resource allocation framework designed
to meet end-to-end latency SLOs (service-level objectives). Dike
leverages deep reinforcement learning to balance resource provi-
sioning and monetary cost by incorporating both composite cost
and SLO violations into the reward. Extensive simulations with
real-world production workloads demonstrate the superiority of
Dike. Experimental results show that the proposed algorithms
approximate the results of state-of-the-art ILP solver within a
factor of 1.08 while dramatically reducing the scheduling time.

Index Terms—Serverless Computing, Edge Computing, Deep
Reinforcement Learning

I. INTRODUCTION

Serverless computing, also known as Function-as-a-Service
(FaaS) has emerged as a new computing paradigm, provid-
ing fine-grained billing in pay-as-you-go model [1, 2], and
relieving application developers from spending massive effort
to manage virtual machines and containers which precluding
them from focusing on the business logic. With serverless
computing, function developers are released from complex in-
frastructure management as they only need to submit function
codes to the FaaS platform, where computing resources are
allocated by the platform [3, 4]. Serverless has been particu-
larly beneficial for applications with variable workloads, such
as those in Machine Learning (ML) applications and Internet
of Things (IoT) [5, 6, 7], where the ability to scale up or down
seamlessly can lead to better performance and cost efficiency.
Furthermore, serverless computing is often utilized to process
data close to its source, such as system operation logs and
user data [8, 9].

Currently, popular serverless platforms like Microsoft Azure
and AWS Lambda enable developers to deploy a large number
of function instances in a short period of time in response

to events. To ensure a seamless end-user experience, many
latency-sensitive applications impose Service-Level Objectives
(SLOs) on the end-to-end latency perceived by users. Service
providers often resort to over-provisioning resources to enforce
these SLOs, but this approach can increase the composite cost
of functions and negatively impact their revenue.

A key enabler for more efficient resource utilization is
SLO-aware resource management. The goal is to continuously
optimize the overall cost by allocating functions to more
cost-effective resources while still meeting the end-to-end
latency SLO. However, modern applications are progressively
transitioning from traditional centralized architectures to dis-
tributed ones, leveraging the recent progress and availability of
Edge Computing infrastructures [10, 11]. User requests often
traverse multiple function calls, potentially operated by geo-
graphically distributed and heterogeneous nodes, depending
on the specific server logic of the applications. This shift
introduces two distinct system-level behaviors: macro-level
behavior, which includes end-to-end latency and composite
cost, and micro-level behavior, which pertains to hardware
resource usage (e.g., CPU and memory).

To embrace the distinct levels of behavior brought by edge
computing, we decouple resource allocation between service-
level SLO constraints and function-level requirements. We
propose Dike, a bi-level learning-based resource management
framework. The goal of Dike is to optimize function schedul-
ing for cost minimization, while ensuring compliance with
the SLOs set by application developers. We formulate the
resource management of serverless functions at the edge as
an Integer Linear Programming (ILP) problem, optimizing the
cost of using serverless functions by considering fine-grained
resource allocation and application-level SLO targets. Due to
the computational complexity of the proposed problem (we
prove it to be NP-hard), we have carefully devised two deep
reinforcement learning (DRL) algorithms: one based on Deep
Q Networks (DQN) and another based on Proximal Policy
Optimization (PPO). These algorithms are designed to balance
the trade-off between composite cost and end-to-end latency.

Our main contributions can be summarized as follows:

• We formulate the function scheduling and resource al-
location problem in edge infrastructures as an Integer
Linear Programming (ILP) problem, including composite
cost and end-to-end SLO (§III). We also prove that this
problem is NP-hard.

• We propose Dike, a bi-level learning-based framework
(§IV). Dike separately devises mechanisms for function
resource allocation and application-level SLO, bridging
them through the reward function in the DRL system.

• We conducted extensive experiments (§V) in an edge
network with capacity constraints to demonstrate Dike’s
cost savings over the Integer Programming Solver Mi-
daco [12]. Compared to the best-performing benchmark,
Dike achieves comparable performance to the Midaco
solver (within a factor of 1.08) while being significantly
more time-efficient (99% less scheduling time).

II. RELATED WORK

Since cloud providers have progressively adopted serverless
computing as their computing paradigm, recent studies have
investigated the trend of applying serverless computing to
edge computing. For instance, DisProTrack [1] proposes to
combine system and service logs together for provenance
tracking over serverless architecture. A universal provenance
graph is used to optimize reverse query parsing based on
log expression. Demeter [8] uses multi-agent reinforcement
learning to configure serverless platforms for geo-distributed
analytics. Xu et al. [9] enable query evaluations for big data
analytics in serverless edge clouds. A parameterized virtual-
ization method is adopted to bridge the short-lived serverless
functions and large resource demands of big data queries. Gu
et al. [7] propose two efficient parameter search methods for
serverless data compression, estimating data transmission time
and monetary costs.

A good deal of research effort has focused on optimizing the
latency, monetary cost and other related areas. For example, Li
et al. [13] use Zygote container and pre-warming to optimize
the container startup time. A randomized rounding method
is used to achieve near-optimal solutions with a performance
guarantee. QUART [6] optimizes the key stages in pipeline
parallelism and uses a bi-level model parameter caching sys-
tem for response latency. Tutuncuoglu et al. [14] propose to
dynamically price compute and memory resources for revenue
maximization. Peng et al. [15] proposes algorithms for cloud-
edge video analytics systems, optimizing both communication
computation in terms of monetary costs. S-Cache [5] combines
LSTM prediction and function caching, optimizing the end-to-
end latency and reduces cold-start issues.

Although serverless computing has brought many benefits, it
is still challenging to achieve near-optimal function scheduling
while considering resource efficiency and SLO violations. We
present Dike, a bi-level resource management framework that
decouples function resource allocation from SLO feedback,
bridging them through the notion of reward function in the
DRL system.

III. PROBLEM FORMULATION

TABLE I: Symbols and Variables

Symbols Description

G = (V, E) Physical network graph
V Set of edge nodes
E Set of links
N Set of functions
T Set of time slots
un The required amount of

resources for function n
Uv(t) The resource capacity of node v
θnv The cost of creating a new

function n at node v
βn
v The cost of operating

function n at node v for one
unit of time

αv,v′ Price for one unit of traffic
between node v and v′

On The SLO target for request n

Variables

znv (t) Decision variable to indicate
if function n is assigned
to node v

znv−>v′(t) Decision variable to indicate if
function n assigned to node v′

from node v
gnv (t) Binary variable indicate if n is newly created

A. System model

We consider a cluster G = (V, E) consisting of |V | geo-
distributed edge nodes in V . Each edge node is equipped with
a certain amount of hardware resources denoted by Uv(t).
Edge nodes are connected by links. For example, we use
(v, v′) ∈ E to represent the link between node v and v′. A
user can generate a request n which requires a function n.
Each function n ∈ N has a resource demand un which is
the required amount of hardware resources. Finally, we use
t ∈ T to denote the time in the system. We list all symbols
and variables in Table I.

B. Function cost model

Function switching cost:
The function switching cost is incurred when creating a new

function instance by pulling images from function repositories
and initializing the environment before a function can execute
the code. We denote the switching cost of function n on the
node v by θnv . Thus, the switching cost Cs(t) of function n
is:

Cs(t) = θnv · gnv (t), (1)

where gnv (t) is a binary variable, indicating if function n is
newly created on node v.

Function operating cost:
The function operating cost refers to the execution of a

specific function incurred by the usage of hardware resources
such as CPU and memory. We denote the price per unit of time
as βn

v (t) and the duration time of function n as δn. Thus, the
operating cost Co(t) is:

Co(t) = βn
v (t) · δn · znv (t), (2)

where znv (t) is a binary variable, indicating if function n is
allocated to node v.

Transmission cost:
The transmission cost is incurred by the bandwidth usage

via expensive WAN links. Let αv,v′ be the price per unit of
data transferred by link (v, v′).

Cl(t) = αv,v′ · hn
v · znv−>v′(t). (3)

where hn
v us the amount of data transferred to function n and

v is where n is deployed. We denote the decision variable as
znv−>v′(t), indicating whether function n is generated at node
v but offloaded to node v′.

C. Problem formulation

We formulate our function scheduling problem, which
optimizes function placement and resource allocation for
serverless edge computing. The objective is to minimize the
composite cost of N requests while meeting their SLOs and
the constraints of resource capacities.

min
∑
t∈T

∑
v∈V

∑
n∈N

(
Cs(t) + Co(t) + Cl(t)

)
, (4)

s.t.
Constraint 5 guarantees that each function request n must

only be assigned to one edge node once.∑
v∈V

znv (t) = 1,∀n ∈ N ,∀t ∈ T , (5)

Constraint 6 ensures that the variables gnv (t), znv (t) and
znv−>v′(t) must be binary.

gnv (t), z
n
v (t), z

n
v−>v′(t) ∈ [0, 1],∀v, v′ ∈ V,∀n ∈ N ,∀t ∈ T ,

(6)
Constraint 7 guarantees that the capacity of each edge node

must be sufficient for the demand of each function.∑
n∈N

un · znv (t) ≤ Uv(t),∀v ∈ V, (7)

Constraint 8 ensures that the SLO is not violated. On

represents the SLO of the serverless request n which is the
maximum acceptable latency for a service request.∑

v∈V

(
dnv,v′ · znv−>v′(t) + dnv

)
≤ On,∀n ∈ N ,∀t ∈ T . (8)

where dnv,v′ denotes the transmission delay between node v
and v′. dnv is the total processing delay of function n hosted
on node v.

D. NP-hardness

The Generalized Assignment Problem (GAP), which is
known to be NP-hard, can be reduced to the proposed problem.
The GAP problem refers to assigning a number of k ∈ K jobs
to a set of j ∈ J agents to execute the jobs, optimizing the
cost. We denote the size of a job k by ωk so we can map the
job k to a function n with a size un. Also, we can map the
agent j to a computing node v in the proposed problem with
a hardware capacity Uv . Finally, if we map the cost objective
of the GAP problem to the composite cost of the proposed
problem, the original problem becomes finding the optimal
solution for cost minimization in the GAP problem. Hence,
the GAP problem becomes a special case of the proposed
problem, and thus the problem is NP-hard.

IV. REALIZING DRL IN Dike

A. Markov Decision Process

We have employed model-free reinforcement learning where
the probability of state transitions remains unknown. Thus,
we use an agent to interact with the environment and learn
from the process, addressing the challenges posed by the
Markov Decision Process (MDP). Despite this, using control
algorithms to solve the MDP remains challenging To solve
the proposed problem by deep reinforcement learning, we first
model the edge network as an environment with a centralized
controller as the DRL agent. We formulate the proposed
problem as an MDP where the agent aims to learn the
optimal policy π that maps states to actions. By this means,
the agent manages to learn a set of scheduling decisions
denoted by a(t) according to the observation of the state
s(t) in time slot t. Meanwhile, the state s(t + 1) of time
t + 1 and the reward r(t) are impacted by the decision
a(t). We denote this interaction and learning process by
{s(t), a(t), rt, s(t+1), a(t+1), r(t+1), s(t+2), . . .}. Thus,
we formulate the state s, the action a, and the reward r as
follows.

1) State representation
The state represents the environment in DRL, consisting of

a set of states denoted by s(t) ∈ S . In particular, the state
includes the existing functions hosted on each edge node,
the hardware capacity on each edge node and the current
requests in each time slot t. We denote the remaining hardware
capacity of all edge nodes as {ϕv(t) ∈ Φ(t)} where ϕv(t) is
the remaining hardware capacity in the edge node v. Also,
we use wn

v (t) to represent the number of existing type n
functions in node v. Thus, the set of existing number of
functions is denoted by W(t). The set of requests is denoted
by Req(t) = {n, in(t)}, where in(t) indicates the index of
the node that the request originates from, and n denotes the
type of the request. Finally, we formulate the set of states S
in time slot t as:

S = {Φ(t),W(t), Req(t)}, (9)

2) Action space
The action space in DRL refers to the behavior of an agent.

While the agent takes an action in time t regarding to the
policy π, the state is transferred to a new state. Let a(t) ∈
A represent the set of possible actions in the system. The
agent can select policies to decide the placement of incoming
requests, namely decide the value of znv (t). Thus, the action
space can be denoted by:

A = {znv (t), gnv (t)}, (10)

The action a(t) serves two purposes, i.e., specify which
edge node to host the function by znv (t); and determine
whether create a new function denoted by gnv (t). The design
of our action space is based on our key insight that decouples
joint actions through their serial relationship. We select a
feasible edge node with sufficient hardware capacity and then
examine if an edge node has idle functions that can be reused,
avoiding frequently creating new functions.

3) Reward
In time t, the agent receives a reward r(t) after it takes an

action to schedule a request. The reward is a metric to evaluate
the performance of the action a(t) under the state s(t), guided
by the policy π. In the proposed problem, we feed the agent
with a shared reward r(t), i.e., the agent receive a reward as
follows.

r(t) = −
(
Cs(t) + Co(t) + Cl(t) + ϵ · Pn

)
, (11)

where Cs(t), Co(t) and Cl(t) are the switching, operating
and transmission cost, and ϵ is a penalty factor. Pn is a binary
variable indicates if request n violates the SLO for penalizing
“bad” actions. In other words, when the SLO is violated, we
impose a penalty cost so the agent can try to avoid “bad”
actions.

The goal of the agent is to maximize the cumulative rewards
given by R(t) as follows. The agent aims to the maximize the
expected discounted reward function:

R(t) = E

 ∞∑
j=0

γjr(t+ j)

 . (12)

where γj is a discount factor to tune the trade-off between
immediate and long-term returns. A value close to 1 indicates
the agent prefers the long-term return and vice versa.

B. Algorithm design

Since our action space is discrete and multi-dimensional,
we employ two different algorithms to compare their perfor-
mance, namely Deep Q-learning (Dike-DQN) and Proximal
Policy Optimization (Dike-PPO). Dike-DQN is a value-based
method that uses a deep neural network to approximate the Q-
functions. In contrast, Dike-PPO is a gradient-based algorithm
with a stable on-policy method that prevents large updates.

In our system, the agent aims to explore and exploit the
action space to learn optimized decisions for request schedul-
ing. By employing a Deep Neural Network, Dike-DQN can

estimate the Q-values for a given action and state, which refers
to the expected reward. Dike-DQN progressively explores and
learns its decision-making capability via experience relay. This
feature is particularly useful for discrete and high-dimensional
environments. In contrast, Dike-PPO uses a gradient policy
method for stable, conservative updates of the policy. Dike-
PPO employs a clipped surrogate objective to restrict the
magnitude of policy updates, balancing exploration and ex-
ploitation. This makes Dike-PPO more versatile and robust,
avoiding overly large updates that could destabilize training.

C. Algorithm overview

State Observation: For each time step t, the agent per-
forms observation of the current state s(t), consisting of the
remaining hardware capacities and functions on each node.

Action Selection: Following receiving the observation of
state, the agent takes an action a(t) ∈ A based on its policy π.
The action refers to the scheduling decision znv (t) and whether
a new function needs to be created by gnv (t). The agent
interacts with the environment using actions of (1) deciding if
creating a new function or using an existing function and (2)
assigning a request to a function. The feasibility of actions for
a state is determined by the state, constrained by the hardware
resources and SLOs.

Reward evaluation: In each time step t, the agent receives
an immediate reward after it takes an action to schedule a
request, reflecting the appropriateness of the action a(t) in
terms of the composite cost. The immediate reward r(t) of
state transition is correlated with the switching, operating,
transmission cost and the SLO violations.

Policy update: Dike-DQN updates the Q-table using the
Bellman equation [16] with experience replay to optimize
learning stability. For Dike-PPO, we compute the policy
gradients first and the policy is updated by tuning the gradients,
ensuring that the policy updates are within a safe region.

Training: Explicitly, we train Dike-DQN with a discount
factor γj of 0.99, a final random action probability of 0.1 and
a learning rate of 0.0001. Also, we train Dike-PPO with a
discount factor γj of 0.99, a clip range of 0.2 and 2048 steps
for each update. They can be adjusted accordingly.

Objective and convergence: The objective of Dike is to
minimize the composite cost which is converted to maximize
the reward. We train the algorithm to converge at an optimized
policy π∗ offline and perform inference online in the edge
networks to achieve efficient request scheduling.

V. PERFORMANCE EVALUATION

We implement Dike with real-world traces in simulations,
totalling 2000 lines of code in Python. The experiment is
conducted on a server with 32 GB RAM and a 13th Gen
Intel(R) Core(TM) i7-13700H processor with 14 cores.

A. Simulation settings

Baselines. To evaluate the performance of Dike, we com-
pare it with an Integer Linear Programming (ILP) solver,

Midaco [12]. Midaco is suitable for approximating the op-
timum in complex optimization problems with high dimen-
sions. Midaco solves problems by using objective functions
with equality and inequality constraints and has been widely
employed by international organizations such as the European
Space Agency (ESA) and German Aerospace (DLR). While
other ILP solvers like Cplex and Gurobi exist, they cannot find
optimized solutions for the proposed problem within a reason-
able time due to its complexity and scale. Overall, Midaco can
efficiently approximate the optimum after sufficient rounds of
iterations.

For the proposed Dike, we have used Stable-Baselines3 [17]
which is a set of reliable implementations of reinforcement
learning algorithms in PyTorch.

Workloads. We generate the serverless requests using a
Huawei dataset [18], the memory allocation for each function
is in [30, 300] MB. This dataset consists of the invocations in
Huawei public clouds for 141 days and 200 functions.

Fig. 1: Map of edge servers in Melbourne CBD area

Edge networks. We selected the EUA dataset [19] that
reports the location of 125 edge servers in Melbourne CBD
area as illustrated in Figure 1. We defined 5 types of edge
nodes with CPU frequency ranges from 2.4 to 3.6 GHz, and
the memory capacity is in [16, 24] GB.

Cost model. We use the parameters from [2] for the cost
model. In particular, the function operating price βn

v (t) is to
be proportional to the CPU frequency of the edge node. The
function switching cost is inversely proportional to the CPU
frequency of the edge node.

B. Performance evaluation

In the evaluation section, we report the results of Midaco
with 100k, 200k and 300k rounds of iterations.

Overall performance. Dike-DQN and Dike-PPO yield a
performance for composite cost within a factor of 1.19 and
1.08 compared to the best performance of Midaco while
the scheduling time is 99% less. This result justifies that
the proposed Dike algorithms can efficiently approximate the
results of Midaco solver in a time-efficient manner.

Distribution of composite cost. We first analyze the
composite cost distribution over all requests as illustrated in
Figure 2. The composite cost is the sum of switching cost,
operating cost and transmission cost in monetary form. It is
not surprising that Midaco 300k achieves the best performance
at $2521.91 for the 99th percentile, while Dike-DQN and

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

CD
F

C o s t p e r m i l l i o n r e q u e s t i n $

 M i d a c o 1 0 0 k
 M i d a c o 2 0 0 k
 M i d a c o 3 0 0 k
 D i k e - D Q N
 D i k e - P P O

Fig. 2: CDF of composite cost

Dike-PPO achieve $2665.66 and $2628.82, respectively. The
average composite cost of Midaco ranges from $1141.53 to
$1089.76 when the iteration increases from 100k to 300k
rounds. In particular, when the number of iterations increases
from 200k to 300k rounds, the performance is only improved
by 1.79%, indicating that Midaco has approximately converged
at 300k rounds. The average cost of Dike-DQN and Dike-PPO
are $1302.91 and $1184.34, respectively. Dike-PPO performs
better due to the fact that PPO is a stable, policy-driven method
that is more effective for large-scale samples.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
CD

F

L a t e n c y i n m s

 M i d a c o 1 0 0 k
 M i d a c o 2 0 0 k
 M i d a c o 3 0 0 k
 D i k e - D Q N
 D i k e - P P O

Fig. 3: CDF of end-to-end latency

End-to-end latency. Figure 3 reports the latency distribu-
tions of all requests in the simulation. Midaco 100k achieves
the best performance with a 99th percentile latency of 269.21
ms, as it sacrifices composite cost for latency. The 99th
percentile latency of Midaco 200k and 300k is 345.01 ms and
336.31 ms while that of Dike-DQN and Dike-PPO is 356.56
ms and 328.26 ms, respectively These four algorithms show
similar performance.

SLO violation. The percentage of SLO violations is the
ratio between the number of requests that violate the SLO
target and the total number of requests. As shown in Figure 4,
Dike-PPO yields the lowest violation percentage at 0.8%
followed by Dike-DQN at 3.6%. For Midaco, the percentage
of SLO violations ranges from 9% to 11.8%. This is not
surprising, as Dike can better explore the solution space during
the offline training phase.

M i d a c o 1 0 0 k

M i d a c o 2 0 0 k

M i d a c o 3 0 0 k

D i k e - D Q N

D i k e - P P O

0 % 5 % 1 0 % 1 5 % 2 0 %
P e r c e n t a g e o f S L O v i o l a t i o n s

Fig. 4: SLO violations

M i d a c o 1 0 0 k

M i d a c o 2 0 0 k

M i d a c o 3 0 0 k
D i k e - D Q N

D i k e - P P O
0 . 0 1

0 . 1

1

1 0

1 0 0

Sc
he

du
ling

 tim
e p

er
req

ue
st

(s)

Fig. 5: Scheduling time

Scheduling time. Figure 5 illustrates the scheduling time
per request for all the methods, i.e., the time needed to make a
scheduling decision. For Dike, this is the inference time. The
scheduling time of Dike-DQN and Dike-PPO are 0.03 and
0.02 seconds, respectively. In contrast, the scheduling time
of Midaco is in the range of 15.6 to 59.1 seconds. This is
because Midaco needs to iterate over a large solution space
for convergence. In contrast, Dike employs an agent to interact
with the solution space and learns the near-optimal policy in
the training phase, enabling Dike to make decisions efficiently
in an online manner.

VI. CONCLUSION

In this work, we investigated the function scheduling
problem with SLO targets for serverless computing at the edge,
aiming to reduce monetary costs while satisfying end-user
experience. We proposed two different deep reinforcement
learning algorithms based on deep Q-networks and proxi-
mal policy optimization to achieve efficient online function
scheduling. Extensive simulation results indicate that Dike
yields superior performance for composite cost within a factor
of 1.08 compared to the ILP solver Midaco. The scheduling
time of Dike is 99% less compared to Midaco, showing that
Dike is well-suited for online scheduling.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon Europe research and innovation programme under the

Grant Agreement No 101092950 (EDGELESS).

REFERENCES

[1] Utkalika Satapathy, Rishabh Thakur, Subhrendu Chattopadhyay, and
Sandip Chakraborty. Disprotrack: Distributed provenance tracking over
serverless applications. In IEEE INFOCOM 2023 - IEEE Conference
on Computer Communications, pages 1–10, 2023.

[2] Chen Chen, Manuel Herrera, Ge Zheng, Liqiao Xia, Zhengyang Ling,
and Jiangtao Wang. Cross-edge orchestration of serverless functions
with probabilistic caching. IEEE Transactions on Services Computing,
17(5):2139–2150, 2024.

[3] Yunkai Liang, Zhi Zhou, and Xu Chen. Edgeorcher: Predictive function
orchestration for serverless-based edge native applications. In 2023 IEEE
ICDCS, pages 1–2, 2023.

[4] Peiyuan Guan, Chen Chen, Ziru Chen, Lin X. Cai, Xing Hao, and Amir
Taherkordi. Context-aware container orchestration in serverless edge
computing. In GLOBECOM 2024 - 2024 IEEE Global Communications
Conference, pages 1041–1046, 2024.

[5] Chen Chen, Lars Nagel, Lin Cui, and Fung Po Tso. S-cache: Function
caching for serverless edge computing. In Proceedings of the 6th
International Workshop on Edge Systems, Analytics and Networking,
EdgeSys ’23, page 1–6, New York, NY, USA, 2023. Association for
Computing Machinery.

[6] Yanying Lin, Yanbo Li, Shijie Peng, Yingfei Tang, Shutian Luo, Haiying
Shen, Chengzhong Xu, and Kejiang Ye. Quart: Latency-aware faas
system for pipelining large model inference. In 2024 IEEE ICDCS,
pages 1–12, 2024.

[7] Rong Gu, Xiaofei Chen, Haipeng Dai, Shulin Wang, Zhaokang Wang,
Yaofeng Tu, Yihua Huang, and Guihai Chen. Time and cost-efficient
cloud data transmission based on serverless computing compression. In
IEEE INFOCOM 2023, pages 1–10, 2023.

[8] Xiaofei Yue, Song Yang, Liehuang Zhu, Stojan Trajanovski, and Xiaom-
ing Fu. Demeter: Fine-grained function orchestration for geo-distributed
serverless analytics. In IEEE INFOCOM 2024, pages 2498–2507, 2024.

[9] Zichuan Xu, Yuexin Fu, Qiufen Xia, and Hao Li. Enabling age-aware
big data analytics in serverless edge clouds. In IEEE INFOCOM 2023,
pages 1–10, 2023.

[10] Yushi Liu, Shixuan Sun, Zijun Li, Quan Chen, Sen Gao, Bingsheng He,
Chao Li, and Minyi Guo. Faasgraph: Enabling scalable, efficient, and
cost-effective graph processing with serverless computing. In ASPLOS
’24, page 385–400, New York, NY, USA, 2024.

[11] Zhaorui Wu, Yuhui Deng, Yi Zhou, Jie Li, and Shujie Pang. Faasbatch:
Enhancing the efficiency of serverless computing by batching and
expanding functions. In 2023 IEEE 43rd International Conference on
Distributed Computing Systems (ICDCS), pages 372–382, 2023.

[12] Midaco-solver. https://www.midaco-solver.com/, 2025.
[13] Yuepeng Li, Deze Zeng, Lin Gu, Mingwei Ou, and Quan Chen.

On efficient zygote container planning toward fast function startup in
serverless edge cloud. In IEEE INFOCOM 2023 - IEEE Conference on
Computer Communications, pages 1–9, 2023.

[14] Feridun Tütüncüoğlu, Ayoub Ben-Ameur, György Dán, Andrea Araldo,
and Tijani Chahed. Dynamic time-of-use pricing for serverless edge
computing with generalized hidden parameter markov decision pro-
cesses. In 2024 IEEE 44th International Conference on Distributed
Computing Systems (ICDCS), pages 668–679, 2024.

[15] Haosong Peng, Yufeng Zhan, Peng Li, and Yuanqing Xia. Tangram:
High-resolution video analytics on serverless platform with slo-aware
batching. In 2024 IEEE ICDCS, pages 645–655, 2024.

[16] Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya. A
reinforcement learning approach to reduce serverless function cold start
frequency. In 2021 IEEE/ACM CCGrid, pages 797–803, 2021.

[17] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Max-
imilian Ernestus, and Noah Dormann. Stable-baselines3: Reliable
reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1–8, 2021.

[18] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke
Darlow, Jianfeng Wang, and Adam Barker. How does it function?
characterizing long-term trends in production serverless workloads. In
2023 ACM Symposium on Cloud Computing, page 443–458. Association
for Computing Machinery, 2023.

[19] Phu Lai, Qiang He, Mohamed Abdelrazek, Feifei Chen, John Hosking,
John Grundy, and Yun Yang. Optimal edge user allocation in edge
computing with variable sized vector bin packing. In Service-Oriented
Computing, pages 230–245. Springer International Publishing, 2018.

